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Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation
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We study the spatiotemporally chaotic dynamics of holes and defects in the one-dimensional~1D! complex
Ginzburg-Landau equation~CGLE!. We focus particularly on the self-disordering dynamics of holes and on the
variation in defect profiles. By enforcing identical defect profiles and/or smooth plane wave backgrounds, we
are able to sensitively probe the causes of the spatiotemporal chaos. We show that the coupling of the holes to
a self-disordered background is the dominant mechanism. We analyze a lattice model for the 1D CGLE,
incorporating this self-disordering. Despite its simplicity, we show that the model retains the essential spa-
tiotemporally chaotic behavior of the full CGLE.

DOI: 10.1103/PhysRevE.68.026213 PACS number~s!: 05.45.Jn, 05.45.2a, 47.54.1r
o
s
a

n
o

al

r

l-
le
on
en

b
F

th
ne
d
th
b

is
e
ut
te

fe
o

d
s

de
ou

nd
s

ed
ces

e
lf-
er
bly
lu-

ring

ct
-

mi-

ge

turn
I. INTRODUCTION

The formation of local structures and the occurrence
spatiotemporal chaos are among the most striking feature
pattern forming systems. The complex Ginzburg-Land
equation~CGLE!

] tA5A1~11 ic1!]x
2A2~12 ic3!uAu2A ~1!

provides a particularly rich example of these phenome
The CGLE is the amplitude equation describing pattern f
mation near a Hopf bifurcation@1,2#, and exhibits an
extremely wide range of behaviors as a function ofc1
andc3 @1–7#.

Defectsand holesare local structures that play a cruci
role in the intermediate regime between laminar states~small
c1 , c3) and hard chaos~largec1 , c3). Isolated defects occu
when A goes through zero, where the complex phasec
ªarg(A) is no longer defined. Homoclinic holes are loca
ized propagating ‘‘phase twists,’’ which are linearly unstab
As illustrated in Fig. 1, holes and defects are intimately c
nected. Defects can give rise to ‘‘holes,’’ which may th
evolve to generate defects, from which further holes can
born, sometimes generating self–sustaining patterns.
more details see Refs.@5,7#.

The aim of our paper is to understand and model
spatiotemporally chaotic hole-defect behavior of the o
dimensional~1D! CGLE, built on the local interactions an
dynamics of the holes and defects. Given the strength of
initial phase twist that generates a hole, and the wave num
of the state into which it propagates, the hole lifetimet turns
out to be the key feature. Surprisingly, the initial phase tw
and invaded state play very different roles. For hole-def
chaos, we will show that the defect profiles, which constit
the phase twist initial condition for the resulting daugh
holes, show rather little scatter for fixedc1 andc3. Changes
in c1 andc3, however, are encoded in changes in the de
profiles, and thus lead to changes in the typical lifetimes
the daughter holes. We then demonstrate that the chaos
not result from variations in defect profiles. It rather follow
from the sensitivity of the holes to the states they inva
since the passage of each hole disorders the backgr
1063-651X/2003/68~2!/026213~7!/$20.00 68 0262
f
of
u

a.
r-

.
-

e
or

e
-

e
er

t
ct
e
r

ct
f

oes

,
nd

wave number profile leading to disordered backgrou
states.It is the self–disordering action of the holes that i
primarily responsible for the spatiotemporal chaos.

With these insights, we can then construct a simplifi
lattice model for hole-defect chaos, which both reprodu
the correct qualitative behavior asc1 andc3 are varied and
which captures the correct mechanism~propagating, self-
disordering holes!. Our initial findings on this subject can b
found in Ref.@7#, where we introduced the concept of se
disordering, and outlined a simplified lattice model. Howev
in this paper, we investigate the subject in considera
greater depth, and, in particular, provide much more conc
sive evidence for the correctnesss of the self-disorde
hypothesis.

FIG. 1. Illustration of the main phenomenology of hole-defe
chaos~after Refs.@4,5,7#!. ~a,b! Space-time gray-scale plots show
ing the invasion of a plane wave state by hole-defect chaos:~a! uAu
~dark: A'0) and ~b! qª]xc ~light: q.0, gray: q'0, dark: q
,0). The propagating objects are incoherent holes, which dyna
cally connect the defects@the black dots in~a!#. Parameter values
arec150.6,c351.4 , with an initial condition given by Eq.~2!, with
g51, qex520.03. The nonzeroqex breaks the left-right symmetry
and results in the differing periods of the left and right moving ed
holes.~c! Closeup ofuAu, and~d! closeup of the complex phasec,
showing in detail how a hole generates a phase defect that in
generates two daughter holes.
©2003 The American Physical Society13-1
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We now briefly summarize the structure of the paper. T
ics discussed already in earlier work@5,7# are dealt with
rather briefly. We start in Sec. II by describing hole-defe
dynamics on a local scale. In Sec. III, we then use t
knowledge to investigate disordered hole-defect dynam
and conclusively show that it is the coupling of the holes
a self-disordered background which is the dominant mec
nism for spatiotemporal chaos. This concept is then ill
trated by a minimal lattice model for hole-defect dynamics
Sec. IV, before we draw our conclusions in Sec. V.

II. HOLE-DEFECT DYNAMICS

We begin by studying the hole lifetimet as a function of
the initial conditions~Fig. 2!. This study motivates the cen
tral question of this paper: how doest depend on the initial
conditions and on the external wave number, and which
these dependencies is most important for spatiotemp
chaos? We then study general properties of defect profi
and demonstrate that in hole–defect chaos the profile
defects show rather little scatter. We also show how the l
times of ‘‘daughter’’ holes born from a typical defect va
with c1 andc3. Taken together, the data presented here fo
direct evidence for the heuristic picture of hole-defect d
namics developed in Refs.@5,7#.

A. Incoherent homoclons

In full dynamic states of the CGLE, one does not obse
the unstablecoherenthomoclinic holes unless one fine tun
the initial conditions~see below!. Instead, evolvingincoher-
entholes which either decay or start to grow towards defe
occur @5,7#. Let us consider the short-time evolution of a
isolated incoherent hole propagating into a regular pl
wave state. Holes can be seeded from initial conditions s
as @7#:

FIG. 2. Contour plot showing the lifetimet of an initial inco-
herent homoclon before a defect is generated. The initial cond
is given by Eq.~2!, and the lifetime is plotted as a function ofg and
qex . Note that the lifetime diverges asqex or g are reduced. In the
left-bottom corner of the diagram, the incoherent homoclon dec
and no defects are formed. The inset shows a sketch of the p
space around the homoclon saddle~after Ref. @7#!, where the
manifold G represents the family of peaked initial conditions
the form ~2!.
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A5exp„i @qexx1~p/2!tanh~gx!#…. ~2!

The two essential parametersg and qex represent, respec
tively, the initial conditions from which the incoherent ho
is born and the background wave number of the state
which the hole propagates. In this context, a single param
g is sufficient to scan through different initial condition
since the coherent holes have just one unstable mode@5#.

A detailed contour plot of the lifetime of an initial inco
herent hole as a function ofg and qex is shown in Fig. 2.
These results were obtained using a semi-implicit numer
integration of the CGLE, with space and time increme
dx50.25 anddt50.01. As expected, three possibilities ca
arise for the time evolution of the initial peak: evolutio
towards a defect~upper right part of Fig. 2!, decay~lower
left part of Fig. 2!, or evolution arbitrary close to a cohere
homoclinic hole~the boundary between these two region!.
These possibilities, together with an illustrative sketch of
phase space, are shown in the inset of Fig. 2. The ra
simple and monotonic behavior oft with qex andg is some-
what of a surprise, and this reinforces our simple phase sp
picture; no other solutions seem to be relevant in this reg
of phase space.

Since homoclons are neither sinks nor sources, Fig. 2
be interpreted as follows: for a right-moving homoclon
incoming wave with positive wave number tends to push
homoclon more quickly towards a defect; previously w
have referred to this as ‘‘winding up’’ of the homoclon. Sim
larly, an incoming wave with negative wave number ‘‘wind
down’’ a right-moving homoclon, possibly even preventin
the formation of a defect@5#.

B. Defects

We now study the defect profiles themselves in more
tail. In Fig. 3~a! we show complex plane plots of Re(a) vs
Im(A) just before, close to, and just after a defect. As can
seen, there is no singular behavior whatsoever: the real
imaginary parts are smooth functions ofx and t, even at the
time of defect formation. However, when transforming
polar coordinates, a singularity manifests itself at the def
where uAu→0. This can also be seen from theq profiles
shown in Figs. 3~b-d!. In fact, it is straightforward to show
that the maximum value of the local phase gradientqm di-
verges as (Dt)21 at a defect@7#, whereDt is the time before
defect nucleation@see Fig. 3~b! of Ref. @7## @8#.

In Figs. 3~e–g!, we overlay complex plane plots ofA
around 103 defects obtained from numerical simulations
the CGLE in the chaotic regime. Surprisingly@see Fig. 3~e!#,
defect profiles of the interior chaotic states are dominated
a single profile in the hole-defect regime, similar to fixingg
in Fig. 2. This provides a strong indication that hole-defe
chaos does not come from scatter in the defect profiles.
large enoughc1 andc3, where holes no longer play a role
and where hard defect chaos sets in@6#, the profiles show a
much larger scatter@Figs. 3~f,g!#.
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C. Defect\ holes

Suppose a hole has evolved to a defect; what dynam
occurs after this defect has formed? As Figs. 3~b-d! show,
defects generate a negative and a positive phase-gra
peak in close proximity. The negative~positive! phase-
gradient peak generates a left~right! moving hole, and analo
gous to what we described in Fig. 2, the lifetimes of the
holes depend on the initial peak and onqex . Hence the de-
fect profile acts as an initial condition for its daughter hol
as can also clearly be seen in Fig. 1.

We now examine the fate of these daughter holes in
well-defined case where the initial defect is generated fr
the divergence of a right-moving, near-coherent homoclon
a qex50 background state@see Fig. 4~a!#. We then definet1
andt2 as the lifetimes of the resulting daughter holes. Wh
a daughter hole does not grow out to form a defect, its l
time diverges. In Fig. 4~b! we plot t1 andt2 for c150.6 as a
function of c3. The initial hole that formed the first defec
has a lifetime of at least 60, and we have checked tha
further increase of this time does not changet1 andt2 appre-
ciably. When botht1 andt2 are infinite, no defect sustainin
states can be formed, and the final state of the CGLE i
general a simple plane wave. When onlyt1 is finite, isolated
zigzag states are formed; such states have been discuss
Ref. @9#, and we will see some examples below. When b
t1 and t2 are finite, and of comparable value, more dis
dered states occur. We will later use these data ont1 andt2 to
calibrate our minimal lattice model for spatiotemporal cha

Hence, we see that changes inc1 andc3 not only lead to
changes in the defect profiles, but also modify the lifetim

FIG. 3. ~a! Plots of the real and imaginary part ofA around a
defect, just before~thin line!, close to ~medium line!, and after
~thick line!, the defect has occurred; the time difference betwe
successive profiles is 0.01. Note that in this representation the
namics looks completely smooth.~b–d! q Profiles for these three
cases~identical vertical scale in each case!; just before the defec
occurs, a large positive spike develops in the profile, while after
defect this becomes a large negative spike.~e–g! Statistics of de-
fects obtained by overlaying 103 defect profiles of spatial extensio
~width! 20, centered around the defect position. An arbitrary ph
factor has been divided out by requiring that Re@]x(A)udefect#50.
All data were collected in a system of size 500, after a transien
500. The coefficientsc1 and c3 are ~e! 0.6,1.4, ~f! 1.4,1.4, ~g!
3.0,3.0.
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of the resulting daughter holes. However, for fixedc1 andc3,
we have seen that the defect profiles, which act as in
conditions for the daughter holes, show rather little scatte
least in the hole-defect regime. In the following section,
will build on this knowledge to unravel the causes of ho
defect spatiotemporal chaos.

III. MECHANISM OF HOLE-DEFECT CHAOS

In this paper and in earlier work@7#, we have argued tha
the principal cause of the spatiotemporally chaotic behav
in the 1D CGLE is the movement of holes through a se
disordered background. Clearly, as we can see from Fig.
disordered background wave numberqex will give rise to
varying hole lifetimes, and thus to disordered hole-def
dynamics. In this section, we explicitly demonstrate the c
rectness of this mechanism by modifying the CGLE dyna
ics in two ways.

Model I: Fixed defect profile. Whenever a defect occurs
this defect is replaced by a standardized defect profile~ob-
tained from an edge defect!. Here the dynamics will be cha
otic, showing the irrelevance of the scatter in defect profil

Model II: Background between holes→ plane wave with
q50. At each timestep, the background between any
holes is replaced by a plane wave with wave number ze
Here no chaos will occur, illustrating the crucial importan
of the self-disordered background.

In model I, the size of the replaced defect profile was fi
centered around the defect; in model II, the background w
defined to be all regions whereuAu.0.95. Our results are
substantially independent of the exact defect size or cu
value. In both cases, it is crucial to ensure that no jumps
the phase occur at the edges of the replaced regions. This
be achieved by phase matching the replaced region~either
defect profile or plane wave! at the left boundary, while the
state to the right of the replaced region is multiplied by
phase factor to enforce phase continuity at the right edge.
take open boundary conditions~i.e., ]xA50) and only study
the behavior far away from these boundaries.

In Fig. 5 we show an example of the dynamics a
spreading of a localized perturbation for the full CGL
@Figs. 5~a,b!# and for the ‘‘fixed defect’’ model I@Fig. 5~c,d!#,
both for c150.6,c351.4. For both models, we took as a

n
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e

e

f

FIG. 4. ~a! Example of the divergence of a near-coherent rig
moving hole, showing also the definition of timest1 and t2. ~b!
Times t1 ~diamonds! and t2 ~triangles! as a function ofc3 for c1

50.6. The inset shows that the curves fort1 and t2 actually cross
for sufficiently largec3.
3-3
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initial condition a defect rich state, which after a few tim
steps shows the typical hole-defect dynamics. Att'167, we
applied a local perturbation of strength 1026 to the middle
gridpoint ~corresponding tox5500) and followed the evolu
tion of both the perturbed and the unperturbed system
order to follow the spreading of perturbations. For the f
CGLE @Figs. 5~a,b!#, the perturbation spreads along with th
propagation of the holes. We note that the initial growth
the perturbation manifests itself in slight ‘‘shifts’’ of the sp
tial and temporal positions of the defects. In particular, wh
two holes collide, a strong amplification of the perturbatio
is observed.

We can now compare this with the above fixed def
profile model I@Fig. 5~c,d!#. Clearly, the replacement of th
defects does not destroy the chaotic behavior of the sys
as confirmed by the spreading of a localized perturba
@Fig. 5~d!#, which propagates in a similar fashion to the fu
CGLE @Fig. 5~b!#. This strongly indicates that variation i
the defect profiles is not contributing in a major way to t
spatiotemporally chaotic behavior of the full CGLE. W
should also point out one subtlety here: due to the discr
zation of time, the times at which defect profiles are repla
are also discretized, and one may worry whether this
stroys the chaotic properties of the model. However, we h
performed simulations for a smaller time step (dt50.001)
and found no qualitative difference. As we will see, this iss
of discretization will play a more important role in the lattic
model discussed in Sec. IV.

Turning now to model II, where laminar regions of th
CGLE are replaced byq50 plane waves, we see that th
disorder is destroyed. This is illustrated in Fig. 6, where
show examples of model II dynamics forc351.4 andc1
50.6,0.7,0.8. Clearly chaos is suppressed forc150.6 and

FIG. 5. ~a! Space-time plot ofq in the ordinary CGLE forc1

50.6,c351.4. ~b! Log–gray scale plot of growth of perturbation
At t5166.66,x5500, one gridpoint was altered by 1026. ~c!
Space-time plot ofq in model I, the CGLE with fixed defect pro
files. ~d! Log–gray scale plot of growth of perturbations for th
fixed defect model I.
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0.7 @Figs. 6~a,b!#, with zigzag-type patterns being especia
dominant. Forc150.8 @Fig. 6~c!#, the initial dynamics do
appear disordered, but after a transient the system evolve
a regular zigzag state@Fig. 6~d!#.

From the behavior of models I and II, we conclude th
the self-disordered background is an essential ingredien
hole-defect chaos, while scatter in the defect profiles is n

IV. LATTICE MODEL

To further justify and test our picture of self-disordere
dynamics, we will now combine the various hole-defe
properties with the left-right symmetry and local phase co
servation to form a minimal model of hole-defect dynamic
The model reproduces regular edge states, spatiotemp
chaos, and can be calibrated to give the correct behavior
function of c1 and c3. An earlier version of the model wa
presented in Ref.@7#. However, as will become clear, w
have now modified and improved the model, and also m
direct comparisons with the full CGLE.

From our earlier analysis~see also Ref.@7#!, we see that
the following hole-defect properties must be incorporated
the model: I Incoherent holes propagate either left or ri
with essentially constant velocity. II Their lifetime depen
on c1 , c3, and the wave number of the state into which th
propagate. When the local phase gradient extremum
verges, a defect occurs. III Each defect, in turn, acts as
initial condition for a pair of incoherent holes.

In our lattice model we discretize both space and tim
and take a ‘‘staggered’’ type of update rule that is complet
specified by the dynamics of a 232 cell ~see Fig. 7!. We put
a single variablef on each site, wheref corresponds to the
phase difference~the integral over the phase gradientq)

FIG. 6. Dynamical states in model II, i.e., the CGLE where t
background between holes is replaced by aq50 plane wave.~a!
For c351.4 andc150.6, only a few isolated zigzags occur.~b!
When c1 is increased to 0.7, more zigzags occur, but there is
chaos.~c,d! For c150.8, a disordered transient occurs~c! that even-
tually freezes into a quasiperiodic zigzag state without disorder~d!.
3-4
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HOLE-DEFECT CHAOS IN THE ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026213 ~2003!
across a cell, divided by 2p. Local phase conservation i
implemented by f l81f r85f l1f r , where the primed
~unprimed! variables refer to values after~before! an update.
Holes are represented by active sites whereufu.f t ; heref
plays the role of the internal degree of freedom. Inactive s
are those withufu,f t , and they represent the backgroun
The value of the cutofff t is not very important as long as
is much smaller than the value off for coherent holes, and i
here fixed at 0.15. Without loss of generality, we force ho
with positive~negative! f to propagate only fromf l (f r) to
f r8 (f l8).

The details of the translation of these rules into the mo
can be found in the caption of Fig. 7 and in Ref.@7#, with one
exception. A ‘‘defect’’ is formed whenf l.fd . Here we
have adopted two alternative schemes. In the simplest
~defect rule A! ~studied before in Ref.@7#!, we take f r8
5fad , andf l85fd212fad . Here we completely fix the
new holes. The factor21 reflects the change in the tot
winding number associated with the defects. Note that
overall winding number does not change byexactly 21.
This is becausef l1f r is usually slightly different fromfd .
As we will discuss below, to avoid breaking this ‘‘phas
conservation’’ we have also studied the second case~defect
rule B!, where we takef r85fad , and f l85f l1f r21
2fad . Here some~small! scatter in the defect profiles i
allowed, but the change in the overall winding number
now strictly 21.

The model does contain a large number of parameterg,
fn , fd , andfad . We will first discuss the role ofg and the
difference between the two defect rules~A! and ~B!.

In order for the model to reproduce the correct lifetim
dependence of edge holes in hole-defect states, the cou
of the holes to their background,g, should be taken negativ
~although its precise value is unimportant!. Forg50 the hole
lifetime t becomes a constant, independent of thef of the
state into which the holes propagate; and moreover, the

FIG. 7. Grid model geometry showing the sites~dots! and hole
propagation directions~arrows!. The update rule is defined within
232 cell, mapping (f l ,f r)→(f l8 ,f r8). ‘‘Active sites’’ where
ufu.f t represent holes, while ‘‘inactive sites’’ whereufu,f t rep-
resent the diffusive background. When both sites are inactive
relevant dynamics is phase diffusion:f r85Df l1(12D)f r . The
value of D is fixed at 0.05 and is not very important. When bo
sites are active, two holes collide and merge:f r85f l85(f l

1f r)/2. When one site is active but smaller thanfd , we imple-
ment the evolution@10#: f r85f l1l(f l2fn2gf r) ~we assume
here that we have a right-moving hole, the case of a left-mov
hole follows by symmetry!. Herel sets the time scale and can b
taken small~fixed at 0.1). Whenf.fd , a defect occurs and two
new holes, i.e., active sites, are generated; for details see text
02621
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namical states are regular Sierpinsky gaskets@Fig. 8~a!#. For
g,0, both the appropriatet-divergence and disorder occu
@Fig. 8~b!#, illustrating the crucial importance of the couplin
between the holes and the self-disordered background.

It turns out that the model with defect rule A is not strict
chaotic; sufficiently small perturbations do not always ch
otically spread. However, with defect rule B implemente
infinitesimal perturbations do spread@see Figs. 8~c,d!#. To
understand this difference consider the fate of a small, lo
ized perturbation. Holes will sweep past and be influenc
by this perturbation, but since time is discrete, a sufficien
small perturbation will not lead to a change in the time
which a hole evolves to a defect. We have found that afte
number of holes have passed over such a perturbation, it
actually be absorbed, so that no chaotic amplification occ
It is therefore the combination of the discreteness of time
the fixed defect profiles which do not, strictly speaking, le
to chaos. By loweringl, this problem is diminished, but thi
makes the model far less effective computationally. Altern
tively, we have found that defect rule B also circumvents t
problem; perturbations can now never be absorbed, du
the nature of the defect rule B. In this case the defect pro
is not entirely fixed, but its scatter is still rather small: f
l50.1, a typical scatter is of the order of 5%, and this
minishes asl is decreased. Therefore we can conclude th
in the continuous time limit of the lattice model, the scat
of the defect profiles is not necessary to obtain chaos. In
remaining part of the paper, we will use model B only.

The self-disordering can be very clearly observed in
minimal model, since its update rules unambiguously spe

e

g

FIG. 8. Illustration of the necessary ingredients for disorder a
chaos in the grid model. In all cases,l50.1,fad50.75, fn

50.59, fd51.01 ~this leads tot1510,t2512, which is the situa-
tion in the full CGLE for c150.6 andc351.5). ~a! Without cou-
pling to the background,g50, the model with defect rule A lead
to regular Sierpinsky gaskets.~b! Wheng523, the model gener-
ates disordered states, that are not strictly chaotic~see text!. ~c!
When defect rule B is applied, also forg523, the dynamics is
truly chaotic, as illustrated by the spreading of perturbations~d!.
3-5
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M. HOWARD AND M. van HECKE PHYSICAL REVIEW E68, 026213 ~2003!
which sites are ‘‘background’’ and which are ‘‘active.’’ Tw
snapshots of the evolution shown in Fig. 8~c!, are plotted in
Fig. 9. These snapshots clearly demonstrate how, after s
cient time has passed, the ‘‘inactive’’ background betwe
the holes has become completely disordered.

The essential parameters determining the qualitative
ture of the overall state arefn , fd andfad . These param-
eters determine the amount of phase winding in the core
the coherent holes withqex50 (fn), and in the new holes
generated by the defects (fd , fad). When varying the
CGLE coefficients, these parameters change too, leadin
qualitatively different states. In particular, they determine
times t1 and t2 that we already studied for the full CGLE i
Sec. II C. We found that whenfn and fad are both de-
creased,t1 and t2 roughly remain the same. We have ther
fore keptfad50.65, and variedfn andfd to tune the values
of t1 andt2. Notice that the symmetry~or asymmetry! of the
defect profile depends onfd21; a value offd,1 typically
promotes zigzag patterns. We have determined the appr
ate values offn andfd for three concrete cases, tabulated
Table I. Notice that the parameters forc351.5 precisely cor-
respond to those used in Fig. 8.

As can be seen in Fig.10, the agreement between
simple model and the CGLE is satisfactory, although clea
the CGLE displays richer behavior. Note that in the f
CGLE, small perturbations of the background wave num
evolve in a nontrivial manner. For example, a nonzero av
age background wave number introduces a drift of the ph
perturbations in the background between the holes@11#.
Since this phase dynamics is much slower than the h
defect dynamics, we have chosen to ignore it in the g
model, and this accounts for the difference between F
10~a! and Fig. 10~b!.

FIG. 9. Illustration of the self-disordering in two snapshots
the fieldf in our lattice model. Note that the scale is such that o
the background is clearly visible; the peaks correspond to ac
holelike states. The data are taken from the runs shown in Fig. 8~c!,
at ~a! t560 and~b! t5300.

TABLE I. Times t1 and t2 as obtained in the full CGLE, and
appropriate coefficientsfn andfd that reproduce these times in ou
grid model.

c1 c3 t1 t2 fn fd

0.6 1.25 14 ` 0.787 0.932
0.6 1.4 11 17 0.686 0.973
0.6 1.5 10 12 0.59 1.01
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Finally, we emphasize that the grid model allows us
disentangle the mechanism of hole-defect chaos, by enab
us to completely control the behavior of defects and the c
pling between holes and the laminar background. The g
model also has the advantage of being possibly the simp
model that captures the essence of the self-disordered h
defect spatiotemporal chaos. We also emphasize that we
carried out a detailed comparison between the full CGLE a
the grid model, both in our analysis of the spreading of p
turbations and in the calibration of the grid model as a fu
tion of c1 and c3. Given the simplicity of the model, the
agreement with the full CGLE is striking.

V. CONCLUSION

In conclusion, we have studied in depth the dynamics
local structures in the 1D CGLE. We have presented str
evidence that the origin of the chaotic behavior in the
CGLE lies in the self-disordering action of the holes, rath
than in the scatter of the defect profiles. Using this insig
we have then developed a minimal lattice model for s
tiotemporal chaos, which, despite its simplicity, reproduc
the essential spatiotemporally chaotic phenomenology of
full CGLE.

How general are these results? We conjecture that th
are two crucial properties needed for hole-defect type cha
propagating saddlelike coherent structures~the holes! and a
‘‘conserved’’ field ~the phase field!. Of course, the phase i
not strictly conserved here due to the occurrence of defe
but (*dx c) mod 2p is a conserved quantity. It is this con
servation that is weakly broken in our grid model for defe
rule A, but is preserved for defect rule B. Only the latter
truly chaotic. The conservation is also the underlying rea
why an evolving hole leaves an inhomogeneous and s
disordered trail behind. Without such a conserved field, th
is no reason for ‘‘self-disordering’’ to occur, and the hol

f

e,

FIG. 10. Comparison between the dynamics of the full CG
~a,c! and our grid model~b,d!, wheret1 andt2 are matched accord
ing to Table I, withc150.6, and~a,b! c351.25 or~c,d! c351.4.
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then typically will exhibit a fixed lifetime, leading to Sier
pinsky gasket-type patterns as is often the case in reac
diffusion models@12#. A related scenario appears to occur
the periodically forced CGLE@13#. Conserved fields of the
type described here may be expected more generally for
tems undergoing a Hopf bifurcation, and can therefore
expected to also occur in Ginzburg-Landau–type equat
including higher order terms, and also in experiments.
have argued in Ref.@14# that saddle-type structures, such
the homoclons here, may be much more general. This le
us to believe that the type of dynamics described here is
an artifact of the pure CGLE, but could be far more wid
spread.

Our work opens up the possibility for quantitative stud
of hole-defect and homoclon dynamics, states which h
recently been observed in various convection experime
@15,16#. We hope that our simple picture will advance the
experimental studies of space-time chaos into the quan
tive realm. Local dynamics of the type studied here, such
the dependence of lifetime on initial conditions@14#, or mea-
, H

ion

ca
e-
l
ca
-

02621
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ot
-

e
ts
e
a-
s

surements of quantities such as the daughter hole lifetimet1
and t2 should be accessible in experiment, thereby circu
venting the difficulties normally associated with character
ing fully developed chaotic states.

Finally, we mention another commonly observed type
spatiotemporal chaos occurring in systems when a perio
state undergoes a certain symmetry breaking bifurca
@17#. Mathematically, such systems may be described b
complex Ginzburg-Landau equation, coupled to a ph
field. Such models are sometimes referred to asA-f models
@18#. Theoretically, the role of holes and defects has not
been studied in great detail for these systems, but the m
ingredients for hole-defect chaos of the type described h
appear to be present. We hope that our work will encour
further studies in this area.
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