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Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation
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We study the spatiotemporally chaotic dynamics of holes and defects in the one-dime(ER)nadmplex
Ginzburg-Landau equaticqi©GLE). We focus particularly on the self-disordering dynamics of holes and on the
variation in defect profiles. By enforcing identical defect profiles and/or smooth plane wave backgrounds, we
are able to sensitively probe the causes of the spatiotemporal chaos. We show that the coupling of the holes to
a self-disordered background is the dominant mechanism. We analyze a lattice model for the 1D CGLE,
incorporating this self-disordering. Despite its simplicity, we show that the model retains the essential spa-
tiotemporally chaotic behavior of the full CGLE.
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[. INTRODUCTION wave number profile leading to disordered background
states.It is the self-disordering action of the holes that is
The formation of local structures and the occurrence ofprimarily responsible for the spatiotemporal chaos
spatiotemporal chaos are among the most striking features of With these insights, we can then construct a simplified
pattern forming systems. The complex Ginzburg-Landaudattice model for hole-defect chaos, which both reproduces

equation(CGLE) the correct qualitative behavior &s andc; are varied and
which captures the correct mechanigpropagating, self-
A=A+ (1+ic,)d2A—(1—icy)|AJ?A (1)  disordering holes Our initial findings on this subject can be

found in Ref.[7], where we introduced the concept of self-
provides a particularly rich example of these phenomenadisordering, and outlined a simplified lattice model. However
The CGLE is the amplitude equation describing pattern forin this paper, we investigate the subject in considerably
mation near a Hopf bifurcatiorf1,2], and exhibits an greater depth, and, in particular, provide much more conclu-
extremely wide range of behaviors as a function af sive evidence for the correctnesss of the self-disordering

andcs [1-7]. hypothesis.
Defectsand holesare local structures that play a crucial
role in the intermediate regime between laminar stetesll 150 ¢ AN AN ¢
’ / \ Y
c,, C3) and hard chaofargec, c3). Isolated defects occur NS 1S ¢
when A goes through zero, where the complex phase 100 \'1\;/ \( /
:=arg(A) is no longer defined. Homoclinic holes are local- NSy
ized propagating “phase twists,” which are linearly unstable. 30 oYY
As illustrated in Fig. 1, holes and defects are intimately con-  , (a) ) 4
nected. Defects can give rise to “holes,” which may then _;5, 0 x 150

evolve to generate defects, from which further holes can be
born, sometimes generating self—sustaining patterns. For &
more details see Reffs,7]. 75
The aim of our paper is to understand and model the ¢
spatiotemporally chaotic hole-defect behavior of the one- ¢5
dimensional(1D) CGLE, built on the local interactions and © )
dynamics of the holes and defects. Given the strength of the 55 '€ 55
initial phase twist that generates a hole, and the wave number 38 68 x T 58 68 x T8
of the state into which it propagates, the hole lifetimeirns . .
out to be the key feature. Surprisingly, the initial phase twist h FIG. 1. IIIusftratlon of the main phc_enomenologyl of lhole-c;!efect
and invaded state play very different roles. For hole-defect aos(after Refs[4,5,7)). (a,by Space-time gray-scale plots show-
. . T - ~”Ing the invasion of a plane wave state by hole-defect ch@p$A|
chaos, we will show that the defect profiles, which constitute A ‘_ o L )
L o . (dark: A=~0) and (b) q:=d,¢ (light: g>0, gray:q~0, dark: q
the phase twist |n|t!al condition for. the resulting daughter<0)_ The propagating objects are incoherent holes, which dynami-
holes, show rather little scatter for fixed andc;. Changes

X ! ) cally connect the defecfshe black dots in(a)]. Parameter values
in ¢, andcg, however, are encoded in changes in the defechrec,=0.6¢,=1.4, with an initial condition given by Eq2), with

profiles, and thus lead to changes in the typical lifetimes of,—=1, q.,= —0.03. The nonzerq,, breaks the left-right symmetry
the daughter holes. We then demonstrate that the chaos dogsd results in the differing periods of the left and right moving edge
not result from variations in defect profiles. It rather follows holes.(c) Closeup of|A|, and(d) closeup of the complex phase

from the sensitivity of the holes to the states they invadeshowing in detail how a hole generates a phase defect that in turn
since the passage of each hole disorders the backgroum@nerates two daughter holes.
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09 ' A=exp(i[ geX+ (m/2)tank yx)]). 2
YL i
¥ The two essential parametegsand g., represent, respec-
2 ) tively, the initial conditions from which the incoherent hole
0.7F 7 is born and the background wave number of the state into
r which the hole propagates. In this context, a single parameter
| Defects 1 v is sufficient to scan through different initial conditions,
since the coherent holes have just one unstable rfede
o5 ay ) 30\ A detailed contour plot of the lifetime of an initial inco-

herent hole as a function of and g, is shown in Fig. 2.
These results were obtained using a semi-implicit numerical

FIG. 2. Contour plot showing the lifetime of an initial inco-  integration of the CGLE, with space and time increments
herent homoclon before a defect is generated. The initial conditioflX=0.25 anddt=0.01. As expected, three possibilities can
is given by Eq(2), and the lifetime is plotted as a function pfand  arise for the time evolution of the initial peak: evolution
Jex- Note that the lifetime diverges ag, or y are reduced. In the towards a defectupper right part of Fig. B decay(lower
left-bottom corner of the diagram, the incoherent homoclon decayteft part of Fig. 3, or evolution arbitrary close to a coherent
and no defects are formed. The inset shows a sketch of the phaggymoclinic hole(the boundary between these two regions
space around the homoclon saddgter Ref.[7]), where the Tnhege possibilities, together with an illustrative sketch of the
manifold I represents the family of peaked initial conditions of phase space, are shown in the inset of Fig. 2. The rather
the form (2). simple and monotonic behavior efwith q., andy is some-

) ) what of a surprise, and this reinforces our simple phase space
~ We now briefly summarize the structure of the paper. Topyicure; no other solutions seem to be relevant in this region
ics discussed already in earlier wofk,7] are dealt with of phase space.

rather briefly. We start in Sec. Il by describing hole-defect Since homoclons are neither sinks nor sources, Fig. 2 can

dynamics on a local scale. In Sec. lll, we then use thig), interpreted as follows: for a right-moving homoclon an
knowledge to investigate disordered hole-defect dynamics . . -

: o ) ihcoming wave with positive wave number tends to push the
and conclusively show that it is the coupling of the holes to,

a self-disordered background which is the dominant mech flomaclon more quickly towards a defect; previously we

nism for spatiotemporal chaos. This concept is then iIIusa—haVe referred to this as “winding up” of the homoclon. Simi-

trated by a minimal lattice model for hole-defect dynamics in/a"!V: an incoming wave with negative wave number “winds
Sec. IV, before we draw our conclusions in Sec. V. down” a right-moving homoclon, possibly even preventing
the formation of a defedi].

-0.05 0.00 Qex 005

Il. HOLE-DEFECT DYNAMICS
) ) o ) B. Defects
We begin by studying the hole lifetimeas a function of

the initial conditions(Fig. 2). This study motivates the cen- ~ We now study the defect profiles themselves in more de-
tral question of this paper: how doesdepend on the initial  tail. In Fig. 3a we show complex plane plots of Re(vs
conditions and on the external wave number, and which ofM(A) just before, close to, and just after a defect. As can be
these dependencies is most important for spatiotempor&een, there is no singular behavior whatsoever: the real and
chaos? We then study general properties of defect profilegnaginary parts are smooth functions»éndt, even at the
and demonstrate that in hole—defect chaos the profiles dfime of defect formation. However, when transforming to
defects show rather little scatter. We also show how the lifepolar coordinates, a singularity manifests itself at the defect,
times of “daughter” holes born from a typical defect vary where|A|—0. This can also be seen from tleprofiles
with ¢, andc;. Taken together, the data presented here formshown in Figs. &-d). In fact, it is straightforward to show
direct evidence for the heuristic picture of hole-defect dy-that the maximum value of the local phase gradigntdi-
namics developed in RefE5,7]. verges asAt) ! at a defecf7], whereAt is the time before
defect nucleatiofsee Fig. &) of Ref.[7]] [8].

In Figs. 3e—g, we overlay complex plane plots &
around 16 defects obtained from numerical simulations of

In full dynamic states of the CGLE, one does not observghe CGLE in the chaotic regime. Surprisingbsee Fig. 8)],
the unstableoherenthomoclinic holes unless one fine tunes defect profiles of the interior chaotic states are dominated by
the initial conditions(see belowy. Instead, evolvingncoher-  a single profile in the hole-defect regime, similar to fixipg
entholes which either decay or start to grow towards defectén Fig. 2. This provides a strong indication that hole-defect
occur[5,7]. Let us consider the short-time evolution of an chaos does not come from scatter in the defect profiles. For
isolated incoherent hole propagating into a regular plandarge enouglt,; andc;, where holes no longer play a role,
wave state. Holes can be seeded from initial conditions sucand where hard defect chaos set$6h the profiles show a
as[7]: much larger scattdiFigs. 3f,g)].

A. Incoherent homoclons
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) ) for sufficiently largec,.
FIG. 3. (a) Plots of the real and imaginary part &faround a

defect, just beforgthin line), close to(medium ling, and after
(thick line), the defect has occurred; the time difference betweerPf the resulting daughter holes. However, for fix@dandcs,
successive profiles is 0.01. Note that in this representation the dywe have seen that the defect profiles, which act as initial
namics looks completely smootth—d) q Profiles for these three conditions for the daughter holes, show rather little scatter, at
cases(identical vertical scale in each casgust before the defect least in the hole-defect regime. In the following section, we
occurs, a large positive spike develops in the profile, while after thewill build on this knowledge to unravel the causes of hole-
defect this becomes a large negative spike-g Statistics of de-  defect spatiotemporal chaos.
fects obtained by overlaying 3@efect profiles of spatial extension
(width) 20, centered around the defect position. An arbitrary phase ll. MECHANISM OF HOLE-DEFECT CHAOS
factor has been divided out by requiring thatf REA) | getecd =0
All data were collected in a system of size 500, after a transient of In this paper and in earlier woil’], we have argued that
500. The coefficientc; and c; are (e) 0.6,1.4, (f) 1.4,1.4, (g) the principal cause of the spatiotemporally chaotic behavior
3.0,3.0. in the 1D CGLE is the movement of holes through a self-
disordered background. Clearly, as we can see from Fig. 2, a
disordered background wave numbzgr, will give rise to
Suppose a hole has evolved to a defect; what dynamicgarying hole lifetimes, and thus to disordered hole-defect
occurs after this defect has formed? As Fig&-8 show, dynamics. In this section, we explicitly demonstrate the cor-
defects generate a negative and a positive phase-gradiefictness of this mechanism by modifying the CGLE dynam-
peak in close proximity. The negativépositive phase- ics in two ways.
gradient peak generates a lgfght) moving hole, and analo- Model I: Fixed defect profileWhenever a defect occurs,
gous to what we described in Fig. 2, the lifetimes of thesehis defect is replaced by a standardized defect prodike
holes depend on the initial peak and gg,. Hence the de- tained from an edge defeécHere the dynamics will be cha-
fect profile acts as an initial condition for its daughter holes,otic, showing the irrelevance of the scatter in defect profiles.
as can also clearly be seen in Fig. 1. Model 1I: Background between holes plane wave with
We now examine the fate of these daughter holes in thg=0. At each timestep, the background between any two
well-defined case where the initial defect is generated fronholes is replaced by a plane wave with wave number zero.
the divergence of a right-moving, near-coherent homoclon irHere no chaos will occur, illustrating the crucial importance
agex=0 background statfsee Fig. 4a)]. We then defind; of the self-disordered background.
andt, as the lifetimes of the resulting daughter holes. When In model I, the size of the replaced defect profile was five
a daughter hole does not grow out to form a defect, its lifecentered around the defect; in model II, the background was
time diverges. In Fig. é) we plott; andt, forc;=0.6 asa defined to be all regions wheié|>0.95. Our results are
function of c;. The initial hole that formed the first defect substantially independent of the exact defect size or cutoff
has a lifetime of at least 60, and we have checked that &alue. In both cases, it is crucial to ensure that no jumps in
further increase of this time does not chamgandt, appre- the phase occur at the edges of the replaced regions. This can
ciably. When botht; andt, are infinite, no defect sustaining be achieved by phase matching the replaced regither
states can be formed, and the final state of the CGLE is idefect profile or plane wavet the left boundary, while the
general a simple plane wave. When otyyis finite, isolated state to the right of the replaced region is multiplied by a
zigzag states are formed; such states have been discussedlmase factor to enforce phase continuity at the right edge. We
Ref.[9], and we will see some examples below. When bothtake open boundary conditiofiise., 3,A=0) and only study
t; andt, are finite, and of comparable value, more disor-the behavior far away from these boundaries.
dered states occur. We will later use these datg @mdt, to In Fig. 5 we show an example of the dynamics and
calibrate our minimal lattice model for spatiotemporal chaosspreading of a localized perturbation for the full CGLE
Hence, we see that changescinandcg not only lead to  [Figs. 5a,b] and for the “fixed defect” model [Fig. 5(c,d)],
changes in the defect profiles, but also modify the lifetimesboth for c,=0.6c;=1.4. For both models, we took as an

C. Defect— holes
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FIG. 5. (a) Space-time plot ofj in the ordinary CGLE forc, FIG. 6. Dynamical states in model Il, i.e., the CGLE where the
=0.6c3=1.4. (b) Log—gray scale plot of growth of perturbations. background between holes is replaced bg=a0 plane wave(a)
At t=166.66x=500, one gridpoint was altered by 19 (c) For c;=1.4 andc,;=0.6, only a few isolated zigzags occuh)
Space-time plot ofy in model I, the CGLE with fixed defect pro- Whenc, is increased to 0.7, more zigzags occur, but there is no
files. (d) Log—gray scale plot of growth of perturbations for the chaos(c,d) Forc,;=0.8, a disordered transient occicg that even-
fixed defect model I. tually freezes into a quasiperiodic zigzag state without disader

initial condition a defect rich state, which after a few time 0.7 [Figs. a,b], with zigzag-type patterns being especially
steps shows the typical hole-defect dynamicstAll67, we  dominant. Forc,;=0.8 [Fig. 6(c)], the initial dynamics do
applied a local perturbation of strength f0to the middle  appear disordered, but after a transient the system evolves to
gridpoint(corresponding tax=500) and followed the evolu-  a regular zigzag stafdig. 6(d)].

tion of both the perturbed and the unperturbed systems in From the behavior of models | and II, we conclude that
order to follow the spreading of perturbations. For the fullthe self-disordered background is an essential ingredient for
CGLE [Figs. Ha,b], the perturbation spreads along with the hole-defect chaos, while scatter in the defect profiles is not.
propagation of the holes. We note that the initial growth of

the perturbation manifests itself in slight “shifts” of the spa- IV. LATTICE MODEL

tial and temporal positions of the defects. In particular, when

two holes collide, a strong amplification of the perturbations To further justify and test our picture of self-disordered
is observed. dynamics, we will now combine the various hole-defect

We can now compare this with the above fixed defectproperties with the left-right symmetry and local phase con-
profile model I[Fig. 5(c,d)]. Clearly, the replacement of the servation to form a minimal model of hole-defect dynamics.
defects does not destroy the chaotic behavior of the systenthe model reproduces regular edge states, spatiotemporal
as confirmed by the spreading of a localized perturbatiorthaos, and can be calibrated to give the correct behavior as a
[Fig. 5(d)], which propagates in a similar fashion to the full function of c; andcs. An earlier version of the model was
CGLE [Fig. 5b)]. This strongly indicates that variation in presented in Ref[7]. However, as will become clear, we
the defect profiles is not contributing in a major way to thehave now modified and improved the model, and also made
spatiotemporally chaotic behavior of the full CGLE. We direct comparisons with the full CGLE.
should also point out one subtlety here: due to the discreti- From our earlier analysiésee also Ref.7]), we see that
zation of time, the times at which defect profiles are replacedhe following hole-defect properties must be incorporated in
are also discretized, and one may worry whether this dethe model: | Incoherent holes propagate either left or right
stroys the chaotic properties of the model. However, we havavith essentially constant velocity. Il Their lifetime depends
performed simulations for a smaller time stegt£0.001) onc,, C3, and the wave number of the state into which they
and found no qualitative difference. As we will see, this issuepropagate. When the local phase gradient extremum di-
of discretization will play a more important role in the lattice verges, a defect occurs. Ill Each defect, in turn, acts as an
model discussed in Sec. IV. initial condition for a pair of incoherent holes.

Turning now to model I, where laminar regions of the In our lattice model we discretize both space and time,
CGLE are replaced bg=0 plane waves, we see that the and take a “staggered” type of update rule that is completely
disorder is destroyed. This is illustrated in Fig. 6, where wespecified by the dynamics of ax2 cell (see Fig. 7. We put
show examples of model Il dynamics feg=1.4 andc,;  a single variablep on each site, wheré corresponds to the
=0.6,0.7,0.8. Clearly chaos is suppresseddp=0.6 and phase differencethe integral over the phase gradiemt
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FIG. 7. Grid model geometry showing the sifg®ty and hole
propagation direction@rrows. The update rule is defined within a
2x2 cell, mapping ¢,,%,)— (o ,¢;). “Active sites” where
| 6| > ¢, represent holes, while “inactive sites” whejé|< ¢, rep-

resent the diffusive background. When both sites are inactive the

relevant dynamics is phase diffusios; =D ¢+ (1—D)¢,. The

value of D is fixed at 0.05 and is not very important. When both

sites are active, two holes collide and mergs; = ¢/ = (¢,
+ ¢,)/2. When one site is active but smaller theég, we imple-
ment the evolution10]: ¢; = ¢ +\(d— dn—0g¢,) (We assume

here that we have a right-moving hole, the case of a left-moving
hole follows by symmetry Here\ sets the time scale and can be

taken smali(fixed at 0.1). Whenp> ¢4, a defect occurs and two
new holes, i.e., active sites, are generated; for details see text.

across a cell, divided by 2. Local phase conservation is
implemented by ¢| + ¢/ =¢ +¢,, where the primed
(unprimed variables refer to values aftépefore an update.
Holes are represented by active sites wheile> ¢, ; here¢

plays the role of the internal degree of freedom. Inactive site
are those with ¢|< ¢;, and they represent the background.

The value of the cutof, is not very important as long as it
is much smaller than the value gffor coherent holes, and is

here fixed at 0.15. Without loss of generality, we force hole

with positive(negative ¢ to propagate only frong, (¢,) to
¢; (/).
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FIG. 8. lllustration of the necessary ingredients for disorder and
chaos in the grid model. In all cases,=0.1¢,4=0.75, ¢,
=0.59, ¢4=1.01 (this leads tat;=10},=12, which is the situa-
tion in the full CGLE forc,;=0.6 andc;=1.5). (a) Without cou-
pling to the backgroundy=0, the model with defect rule A leads
to regular Sierpinsky gasketé) Wheng= —3, the model gener-
ates disordered states, that are not strictly cha@e text (c)

hen defect rule B is applied, also fgr=—3, the dynamics is
ruly chaotic, as illustrated by the spreading of perturbati@hs

namical states are regular Sierpinsky gasketg. 8a)]. For
<0, both the appropriate-divergence and disorder occur
Fig. 8b)], illustrating the crucial importance of the coupling

between the holes and the self-disordered background.
It turns out that the model with defect rule A is not strictly

The details of the translation of these rules into the mOde!:haotic; sufficiently small perturbations do not always cha-

can be found in the caption of Fig. 7 and in Ré&f], with one
exception. A “defect” is formed whenp,>¢,4. Here we

otically spread. However, with defect rule B implemented,
infinitesimal perturbations do spreqdee Figs. &,d)]. To

have adopted two alternative schemes. In the simplest casg,gerstand this difference consider the fate of a small, local-

(defect rule A (studied before in Ref[7]), we take ¢/

ized perturbation. Holes will sweep past and be influenced

= ¢aq, and ¢ = py—1— aq. Here we completely fix the py this perturbation, but since time is discrete, a sufficiently
new holes. The factor-1 reflects the change in the total small perturbation will not lead to a change in the time at
winding number associated with the defects. Note that thgvhich a hole evolves to a defect. We have found that after a
overall winding number does not change byactly —1.  number of holes have passed over such a perturbation, it can
This is because, + ¢, is usually slightly different frompy.  actually be absorbed, so that no chaotic amplification occurs.
As we will discuss below, to avoid breaking this “phase |t is therefore the combination of the discreteness of time and
conservation” we have also studied the second cdséect  the fixed defect profiles which do not, strictly speaking, lead
rule B), where we take¢,=d¢,q, and ¢/=¢ +é,—1  to chaos. By lowering., this problem is diminished, but this
— ¢aq- Here some(smal) scatter in the defect profiles is makes the model far less effective computationally. Alterna-
allowed, but the change in the overall winding number istively, we have found that defect rule B also circumvents this
now strictly — 1. problem; perturbations can now never be absorbed, due to
The model does contain a large number of paramegers, the nature of the defect rule B. In this case the defect profile
bn, dq, andg,q. We will first discuss the role af and the is not entirely fixed, but its scatter is still rather small: for
difference between the two defect rul@s) and (B). N=0.1, a typical scatter is of the order of 5%, and this di-
In order for the model to reproduce the correct lifetime minishes as\ is decreased. Therefore we can conclude that,
dependence of edge holes in hole-defect states, the coupliig the continuous time limit of the lattice model, the scatter
of the holes to their background, should be taken negative of the defect profiles is not necessary to obtain chaos. In the
(although its precise value is unimportarforg=0 the hole  remaining part of the paper, we will use model B only.
lifetime 7 becomes a constant, independent of ¢hef the The self-disordering can be very clearly observed in the
state into which the holes propagate; and moreover, the dyninimal model, since its update rules unambiguously specify
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FIG. 9. lllustration of the self-disordering in two snapshots of 000

the field ¢ in our lattice model. Note that the scale is such that only
the background is clearly visible; the peaks correspond to active, t
holelike states. The data are taken from the runs shown in Fy. 8

at (a) t=60 and(b) t=300.

which sites are “background” and which are “active.” Two ” '
snapshots of the evolution shown in FigcB are plotted in 0
Fig. 9. These snapshots clearly demonstrate how, after suffi 250 x 750 250 x 750

cient time has passed, the “inactive” background between

the holes has ,become completely d'_so_rdered' o (a,0 and our grid mode{b,d), wheret,; andt, are matched accord-
The essential parameters determining the qualitative N&Ag to Table I, withc,;=0.6, and(a,b c3=1.25 or(c,d) cs=1.4.
ture of the overall state aré,, ¢4 and ¢,4. These param-

eters determine the amount of phase winding in the core of Finally, we emphasize that the grid model allows us to

the coherent holes witex=0 (#y), and in the new holes  yisentangle the mechanism of hole-defect chaos, by enabling
generated by the defectspf, ¢aq). When varying the ;515 completely control the behavior of defects and the cou-
CGLE coefficients, these parameters change too, leading t&ing between holes and the laminar background. The grid
qualitatively different states. In parti_cular, they determine_themodel also has the advantage of being possibly the simplest
timest, andt, that we already studied for the full CGLE in e that captures the essence of the self-disordered hole-
Sec. Il C. We found that whem, and ¢,4 are both de-  yefect spatiotemporal chaos. We also emphasize that we have
creasedf; andt, roughly remain the same. We have there-caried out a detailed comparison between the full CGLE and
fore keptg,q=0.65, and varieds, and ¢ to tune the values e grig model, both in our analysis of the spreading of per-
of t; andt,. Notice that the symmetrfor asymmetryof the  (rpations and in the calibration of the grid model as a func-
defect profile depends ofi;—1; a value ofpq<1 typically  tion of ¢, and cs. Given the simplicity of the model, the
promotes zigzag patterns. We have determined the appmp@rgreement with the full CGLE is striking.

ate values ofp,, and ¢4 for three concrete cases, tabulated in

Table I. Notice that the parameters foy= 1.5 precisely cor-
respond to those used in Fig. 8. V. CONCLUSION

As can be seen in Fig.10, the agreement between the |, concjusion, we have studied in depth the dynamics of

simple model and the CGLE s satisfactory, although clearly,ca structures in the 1D CGLE. We have presented strong
the CGLE displays richer behavior. Note that in the full \;jence that the origin of the chaotic behavior in the 1D

CGLE, small perturbations of the background wave numbeg| g jies in the self-disordering action of the holes, rather

evolve in a nontrivial manner. For example, & NONZero avery, oy in the scatter of the defect profiles. Using this insight,
age background wave number introduces a drift of the phasge have then developed a minimal lattice model for spa-
perturbations in the background between the hd®EH.  iotemporal chaos, which, despite its simplicity, reproduces

Since this phase dynamics is much slower than the holeyg essential spatiotemporally chaotic phenomenology of the
defect dynamics, we have chosen to ignore it in the grict ;| cGLE.

model, and this accounts for the difference between Fig. oy general are these results? We conjecture that there
10(a) and Fig. 10b). are two crucial properties needed for hole-defect type chaos:
propagating saddlelike coherent structufé® holeg and a
“conserved” field (the phase field Of course, the phase is
not strictly conserved here due to the occurrence of defects,

FIG. 10. Comparison between the dynamics of the full CGLE

TABLE |I. Timest; andt, as obtained in the full CGLE, and
appropriate coefficient$,, and ¢4 that reproduce these times in our

grid model. but (fdx ) mod 27 is a conserved quantity. It is this con-
c c i i & & servation th_at is weakly broken in our grid model for defe_ct
! 3 ! 2 n d rule A, but is preserved for defect rule B. Only the latter is
0.6 1.25 14 o 0.787 0.932 truly chaotic. The conservation is also the underlying reason
0.6 1.4 11 17 0.686 0.973 why an evolving hole leaves an inhomogeneous and self-
0.6 15 10 12 0.59 1.01 disordered trail behind. Without such a conserved field, there

is no reason for “self-disordering” to occur, and the holes

026213-6



HOLE-DEFECT CHAOS IN THE ONE-DIMENSIONA . .. PHYSICAL REVIEW E 68, 026213 (2003
then typically will exhibit a fixed lifetime, leading to Sier- surements of quantities such as the daughter hole lifetimes
pinsky gasket-type patterns as is often the case in reactiomndt, should be accessible in experiment, thereby circum-
diffusion modelqd12]. A related scenario appears to occur in venting the difficulties normally associated with characteriz-
the periodically forced CGLE13]. Conserved fields of the ing fully developed chaotic states.
type described here may be expected more generally for sys- Finally, we mention another commonly observed type of
tems undergoing a Hopf bifurcation, and can therefore bepatiotemporal chaos occurring in systems when a periodic
expected to also occur in Ginzburg-Landau—type equationstate undergoes a certain symmetry breaking bifurcation
including higher order terms, and also in experiments. Wd17]. Mathematically, such systems may be described by a
have argued in Ref14] that saddle-type structures, such ascomplex Ginzburg-Landau equation, coupled to a phase
the homoclons here, may be much more general. This lead#ld. Such models are sometimes referred té\ag models
us to believe that the type of dynamics described here is nqtL8]. Theoretically, the role of holes and defects has not yet
an artifact of the pure CGLE, but could be far more wide-been studied in great detail for these systems, but the main
spread. ingredients for hole-defect chaos of the type described here
Our work opens up the possibility for quantitative studiesappear to be present. We hope that our work will encourage
of hole-defect and homoclon dynamics, states which havéurther studies in this area.
recently been observed in various convection experiments
[15,16. We hope that our simple picture will advance these
experimental studies of space-time chaos into the quantita-
tive realm. Local dynamics of the type studied here, such as M.H. acknowledges support from the Stichting FOM and
the dependence of lifetime on initial conditiofisf], or mea-  from The Royal Society.
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